Section Handout 6

Problem One: Programming Turing Machines

In Problem Set 7, you're asked to augment the WB6 language up to a language called WB8, which supports a finite number of unbounded counters. The new commands you'll be adding are

- $\mathbf{C + +}$, which increments counter C;
- C--, which decrements counter C;
- If Zero (C), go to L, which goes to line L if counter C is zero;
- $\quad \mathrm{C}_{1}:=\mathrm{C}_{2}$, which sets counter C_{1} equal to counter C_{2};
- $\mathrm{C}_{1}:=\mathrm{C}_{2}+\mathrm{C}_{3}$, which sets counter C_{1} equal to $C_{2}+C_{3}$; and
- If $\mathbf{C}_{1}=\mathbf{C}_{2}$, go to L, which goes to line L if counters C_{1} and C_{2} have the same value.

Now, suppose that you want to augment WB one more time by creating the language WB9, which is WB8 with the addition of one extra command:

- $v:=$ Tape [C], which sets variable v to hold the C th cell of Track 1, Tape 1 ; and Describe how to convert an arbitrary WB9 program into a WB8 program. Your description should address the following questions:

1. In converting from WB9 to WB8, will you need extra stacks, tracks, variables, tape symbols, tapes, or counters? If so, how many of each will you need and why?
2. In converting from WB9 to WB8, will you need to set up the tapes, stacks, tracks, variables, or counters in any way before beginning the program? If so, how and why?
3. How will you translate $\mathbf{v}:=$ Tape [C] into equivalent $\mathbf{W B 8}$ commands? You should give the specific commands with which you will replace this command.

Problem Two: Nondeterministic Algorithms

Prove that the RE languages are closed under homomorphism. That is, if $L \subseteq \Sigma_{1}{ }^{*}$ is an $\mathbf{R E}$ language and $h^{*}: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ is a homomorphism, then $h^{*}(L)=\left\{w \in \Sigma_{2}{ }^{*} \mid \exists x \in L . h^{*}(x)=w\right\}$ is an RE language. As a strong hint, you might want to use a nondeterministic Turing machine.

Problem Three: Unsolvable Problems

i. Consider the language $E N T E R=\{\langle M, w, q\rangle \mid \mathrm{TM} M$ enters state q when run on string $w\}$. Prove that $E N T E R \notin \mathbf{R}$ by showing if $E N T E R \in \mathbf{R}$, then $\mathrm{A}_{T M} \in \mathbf{R}$.
ii. Consider the language NOENTER $=\{\langle M, w, q\rangle \mid$ TM M does not enter state q when run on string $w\}$. Prove that NOENTER $\notin \mathbf{R E}$ by showing if $E N T E R \in \mathbf{R E}$, then $L_{\mathrm{D}} \in \mathbf{R E}$.

