Section Handout 6

Problem One: Programming Turing Machines

In Problem Set 7, you're asked to augment the **WB6** language up to a language called **WB8**, which supports a finite number of unbounded counters. The new commands you'll be adding are

- **C++**, which increments counter *C*;
- **C**--, which decrements counter *C*;
- If Zero(C), go to L, which goes to line L if counter C is zero;
- $C_1 := C_2$, which sets counter C_1 equal to counter C_2 ;
- $C_1 := C_2 + C_3$, which sets counter C_1 equal to $C_2 + C_3$; and
- If $C_1 = C_2$, go to L, which goes to line L if counters C_1 and C_2 have the same value.

Now, suppose that you want to augment **WB** one more time by creating the language **WB9**, which is **WB8** with the addition of one extra command:

• $\mathbf{v} := \text{Tape}[C]$, which sets variable v to hold the Cth cell of Track 1, Tape 1; and

Describe how to convert an arbitrary **WB9** program into a **WB8** program. Your description should address the following questions:

- 1. In converting from **WB9** to **WB8**, will you need extra stacks, tracks, variables, tape symbols, tapes, or counters? If so, how many of each will you need and why?
- 2. In converting from **WB9** to **WB8**, will you need to set up the tapes, stacks, tracks, variables, or counters in any way before beginning the program? If so, how and why?
- 3. How will you translate **v** := **Tape**[C] into equivalent **WB8** commands? You should give the specific commands with which you will replace this command.

Problem Two: Nondeterministic Algorithms

Prove that the **RE** languages are closed under homomorphism. That is, if $L \subseteq \Sigma_1^*$ is an **RE** language and $h^* : \Sigma_1^* \to \Sigma_2^*$ is a homomorphism, then $h^*(L) = \{w \in \Sigma_2^* \mid \exists x \in L, h^*(x) = w\}$ is an **RE** language. As a strong hint, you might want to use a nondeterministic Turing machine.

Problem Three: Unsolvable Problems

- i. Consider the language $ENTER = \{ \langle M, w, q \rangle | TM M \text{ enters state } q \text{ when run on string } w \}$. Prove that $ENTER \notin \mathbf{R}$ by showing if $ENTER \in \mathbf{R}$, then $A_{TM} \in \mathbf{R}$.
- ii. Consider the language $NOENTER = \{ \langle M, w, q \rangle | TM M \text{ does not enter state } q \text{ when run on string } w \}$. Prove that $NOENTER \notin \mathbf{RE}$ by showing if $ENTER \in \mathbf{RE}$, then $L_D \in \mathbf{RE}$.